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A B S T R A C T

Segmentation of pancreatic tumors in CT images is important for clinical diagnosis and treatment, but
it faces challenges of small size, low contrast, and large position difference. To address these issues, the
abnormal pancreas is first segmented based on a dual branch coding network (DB-Net) using a coarse-to-
fine segmentation strategy. In the encoder part, one branch extracts the semantic features of the pancreas
and its surroundings, and the other branch captures the complex pancreas through wide-channel convolution
and few down-sampling operations. An aggregation layer is used to fuse the different feature maps obtained
by the two branches, and a U-Net decoder is used to segment the abnormal pancreas in CT images with
pancreatic tumors. DB-Net is further trained to obtain the accurate pancreatic segmentation. Then, pancreatic
tumors are segmented in the pancreas based on the fine-grained enhancement network (FE-Net). The FE-Net
integrates a contrast enhancement block with a reverse attention block to extract detailed features and excavate
effective information from the feature maps of the encoder and decoder to segment pancreatic tumors. In
order to segment the tumor more accurately, the pancreatic tumor is segmented in the cropped pancreas.
Experiments on 116 contrast-enhanced abdominal CT volumes of pancreatic cancer and 42 contrast-enhanced
abdominal CT volumes of normal pancreas verify the effectiveness of the proposed framework in pancreatic
tumor segmentation by using the two-fold cross-validation strategy. Compared to state-of-the-art deep learning
segmentation network, the proposed method can achieve better segmentation of pancreas and pancreatic
tumors.
1. Introduction

Pancreatic cancer is one of the common malignant tumors of the
digestive system. The characteristics of pancreatic cancer include un-
obvious early symptoms, high degree of malignancy, rapid progression
of the disease, and poor prognosis [1,2]. According to statistics from
the World Health Organization (WHO), the incidence of pancreatic
cancer in the world was 277,000, the incidence ranked 13th among
malignant tumors. The deaths were about 266,000, and the mortality
rate ranked 7th among malignant tumors [3]. CT is currently one of the
most important imaging for pancreatic cancer due to the short scanning
time, large scanning range, and high resolution [4,5]. CT can be used
to detect lesions and make a reliable evaluation and estimation of the
surgeries of pancreatic tumors [6,7]. The use of advanced algorithms to
automatically segment pancreatic tumors in CT images is of great sig-
nificance for the diagnosis and treatment of pancreatic cancer. Accurate
and automatic pancreatic tumors and pancreas segmentation can save
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physicians’ efforts to annotate pancreas anatomy since it is tedious and
time-consuming to label each voxel in huge number of slices in routine
clinics.

Although CT have been widely used, pancreatic tumors and pan-
creas segmentation are still a challenging task in the medical image
processing field. As shown in Fig. 1, the main research difficulties
of pancreatic tumor segmentation in CT images include the following
three points. First, the pancreas is very small, less than 0.5% of the
entire CT volume [8], while pancreatic tumors are much smaller,
and most pancreatic tumors account for less than 0.1% of the entire
CT volume [9]. Second, the boundary of the pancreas and tumors is
visually blurred, and the contrast between surrounding tissues and the
pancreas is low, especially at the head of the pancreas. The boundary
between the pancreas and the duodenum is difficult to distinguish,
and the parenchyma and tumors of the pancreas are also difficult to
be distinguished. The contrast between surrounding tissues and the
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Fig. 1. Challenges in pancreas and tumor segmentation. The green region is the
pancreatic tumor, and the red region is the rest of the pancreas. These images show the
size, boundary, shape and location of the pancreas and tumors have great anatomical
differences between different patients.

tumor is also relatively low [10]. Third, the shape and location of
the pancreas and tumors have great anatomical differences between
different patients, especially the position of pancreatic tumors, which
can exist anywhere in the pancreas [11]. Therefore, to address the
above issues, an effective segmentation framework is designed for
robust pancreatic tumor segmentation with context adaptation and
detailed feature extraction.

In routine clinics, pancreatic tumor is often with small number
of images and only few pixels in CT slices. If the tumor is directly
segmented in the entire CT slice, the segmented result is usually in-
accurate. Therefore, generally, the pancreas in CT images is first seg-
mented, and then the pancreatic area is cropped according to the results
of the pancreas segmentation. Subsequently, the pancreatic tumor is
segmented in the pancreas, and finally the segmented result of the
pancreatic tumor is obtained [9,12]. Therefore, the final pancreatic
tumor segmentation performance largely depends on the pancreas seg-
mentation. However, the shape of the pancreas varies greatly from
different patients, and the surrounding environment is complex. It is
difficult for previous Convolutional Neural Networks (CNN) to extract
sufficient semantic information and detailed information of the pan-
creas to determine the exact location and contour of the pancreas.
In addition, in the stage of pancreatic tumor segmentation, previous
methods cannot extract well the edges of the tumor to adapt the
contrast between the pancreatic tumor and other surrounding tissues,
resulting in inaccurate segmented results.

Based on the above observations, a novel CNN called DBFE-Net is
designed to segment pancreatic tumors in CT images. A dual-branch
encoder–decoder network (DB-Net) as the first part of DBFE-Net is
designed to segment the pancreas. The semantic branch extracts rich
semantic features of the pancreas and its surroundings through deep
convolution and multiple down-sampling operations to overcome the
influence of numerous blood vessels, tissues, and organs around the
pancreas, and the detailed branch captures complex details of the
pancreas through wide-channel convolution and few down-sampling
operations to overcome the problem of unclear pancreatic edges. The
two kinds of information are weighted and fused with the aggrega-
tion layer. Then, the segmented results are obtained by upsampling
like U-Net [13]. Based on our previous work [14], we further follow
the previous idea of pancreas segmentation and use a coarse-to-fine
segmentation strategy to achieve accurate pancreas segmentation [15,
16]. A fine-grained enhancement encoder–decoder network (FE-Net) as
the second part of DBFE-Net is then designed to segment pancreatic
2

tumors in the pancreas. First, a contrast enhancement block (CEB) is
designed to extract the detailed features in the feature map and use
the attention mechanism to integrate the features to solve the problem
of low contrast between the pancreatic tumor and the surrounding
structures. Then, a reverse attention block (RAB) is proposed to invert
the decoder feature map to guide the mining of effective information
in the encoder feature map. In summary, the main contributions of this
work are summarized as follows.

1. DB-Net is proposed to segment the abnormal pancreas. In the
encoder part, one branch extracts the rich semantic features of the
pancreas and its surrounding tissues or organs through deep convolu-
tion and down-sampling operations, and the other branch captures the
complex pancreas through wide-channel convolution and few down-
sampling operations. DB-Net combines semantic information extraction
branch and detailed information extraction branch, which can better
segment the pancreatic head and tail regions. An aggregation layer is
used to fuse the different feature maps obtained by the two branches,
and an U-Net decoder is used to segment the abnormal pancreas in CT
images with pancreatic tumors. DB-Net is further trained in the cropped
initial segmentation to obtain the accurate pancreatic segmentation.

2. In order to solve the problem of small size and low contrast, FE-
Net is designed to improve segmentation accuracy of pancreatic tumors.
CEB is set after the encoder layer to extract the edge detail information
of the pancreas in the feature map of the encoder layer. RAB is set
between the encoder and the decoder. The output of each layer of the
decoder features are used to fuse the complementary regions and details
of the previous layer to make up for the tumor information lost in the
down-sampling. In order to segment the tumor more accurately, the
pancreatic tumor is segmented in the cropped pancreas.

The rest of this paper is organized as follows. We first review related
work in Section 2. The technical details of the proposed pancreatic
tumor segmentation scheme are described in Section 3. Section 4
presents the experimental results. The paper is finally concluded in
Section 5.

2. Related work

With the development of deep learning [17–19], it has been widely
used in many computer vision tasks, such as semantic segmenta-
tion [20–22], edge detection [23–25] and image denoising [26–28].
Medical image segmentation also used deep learning methods to achieve
considerable performance [13,29–32]. Among them, the segmentation
of pancreas and pancreatic tumors has also made some progress by
using deep learning methods.

2.1. Pancreas segmentation

Regarding to the normal pancreas segmentation of abdominal CT
images, many researchers have conducted a lot of researches. Roth
et al. [33] used random forest algorithm and deep learning to obtain
semantic clues of organ interior and boundary maps and integrated
them to generate pixel-level label pancreas segmentation. Ma et al. [34]
proposed a new Bayesian model that combined the segmented results
of deep neural networks and statistical shape models to refine the
segmented results of the pancreas. Both these methods combined tra-
ditional methods and deep learning methods to jointly optimize the
segmentation of the pancreas. Due to the use of traditional algorithms,
compared with the current emerging pure deep learning methods, the
speed is slower to obtain the final segmented results. Roth et al. [35]
subsequently used a nested convolutional neural network to implement
the automatic positioning and segmentation of the pancreas using a
two-stage strategy. Zhou et al. [36] used a two-stage coarse-to-fine
method to segment the pancreas. They separately trained two fully con-
volutional neural network (FCN) to process the entire images and the
regions cropped according to the bounding box. In the test phase, the
coarse segmented results of the first network were sent to the second
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Fig. 2. Overview of the proposed DBFE-Net. DB-Net is used to extract semantic and fine-grained feature to achieve accurate segmentation of the pancreas with a coarse-to-fine
strategy, and then FE-Net is used to extract fine-grained feature with higher contrast to segment the pancreatic tumor in the pancreas region.
network, and the fixed-point model was optimized through an iterative
process to achieve more accurate segmentation. Man et al. [37] pro-
posed a deep reinforcement learning strategy. First, a pancreas location
bounding box was generated, and then a deformable deep U-shaped
network method was proposed to further segment the pancreas with
obvious non-rigid shape deformation. To solve the spatial non-smooth
problem of segmentation between adjacent pancreatic image slices and
improve the consistency of the shape of the pancreas after segmenta-
tion, Cai et al. [38] introduced a recurrent neural network to process
the continuous initial segmented results of a two-dimensional convo-
lutional neural network and effectively learn long-term dependence
information between adjacent slices through LSTM. To use the three-
dimensional information of the pancreas, Oktay et al. [39] used the
spatial attention mechanism in three dimensions to guide the network
to focus on the pancreas position in the skip-connection part. Zhu
et al. [40] proposed a coarse-to-fine three-dimensional convolutional
neural network framework, which divided three-dimensional CT vol-
ume image into many small cubes with the same size as input and
used the three-dimensional spatial information for fine segmentation of
the pancreas. However, all these methods did not consider the complex
background interference around the pancreas.

2.2. Pancreatic tumor segmentation

Although the segmentation of normal pancreas in CT images still
needs improvement, there are few studies on the segmentation of
pancreatic tumors in CT images. The main reason is due to the small
size of pancreatic tumors, low contrast with pancreatic parenchyma,
and huge differences in the location of pancreatic tumors, it is difficult
to accurately segment pancreatic tumors. Dmitriev et al. [9] proposed
a semi-automatic segmentation algorithm for pancreatic cysts. Because
the size and shape of the cysts are different, the authors used a new
combination of random walk and region growing methods to delineate
the boundary between the pancreas and the cyst. Some researchers
have begun to use deep learning methods for the segmentation of
pancreatic tumors. Zhou et al. [40] used a deep learning method to
segment the pancreas first through FCN, and then cropped the origi-
nal image to segment the pancreatic cyst through another FCN. Quo
3

et al. [12] combined contextual U-Net and a graph-based framework
to segment 3D tumors. First, the tumor was manually cropped from
the entire image into a cuboid. Then, each two-dimensional slice and
its two adjacent slices were sent to U-Net to obtain the segmentation
probability map. The final segmentation was obtained through the
graph search algorithm. Zhou et al. [41] proposed a dual-path network
to fuse dual-phase CT images of the arterial phase and the venous phase
to segment pancreatic tumors and added a matching loss function to
encourage the commonality between high-level feature representations
of different phases. Zhu et al. [42] cropped CT images into three
different sizes of three-dimensional small blocks and sent them to three
three-dimensional U-Net with a deep supervision mechanism. Finally,
the three prediction results of the network were averaged to obtain the
final pancreatic tumor segmentation.

3. Method

The proposed DBFE-Net for pancreatic tumor segmentation is shown
in Fig. 2. First, the designed DB-Net and a coarse-to-fine strategy is
used to achieve accurate segmentation of the pancreas. Second, CT
images are cropped according to the final segmentation of the pancreas
to obtain the pancreas region. Third, the designed FE-Net is used
to segment the pancreatic tumor in the pancreas region. Finally, the
segmented pancreatic tumor is restored to the original size to obtain
the final pancreatic tumor segmentation.

3.1. Pancreas segmentation

The overall structure of the dual branch coding network (DB-Net) is
shown in Fig. 2. The idea of this structure comes from Bisenet V2 [43].
The encoder path is a dual-branch encoding structure. The left branch is
the semantic feature extraction branch, and the semantic information is
extracted in the deep layer of the network through sequent convolution
and down-sampling operations. The right branch is the detail feature
extraction branch. In the network shallow layer, multiple wide-channel
convolution operations are used to extract detailed information. The
deepest level of DB-Net is the aggregation layer to fuse semantic and
detailed features.
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Fig. 3. (a) The structure of the channel layer, (b) The structure of the aggregation
layer.

Fig. 4. Feature extraction by Bisenet V2 and DB-Net for the image in Fig. 1(d). (a)
A typical feature map after the detail information extraction branch in Bisenet V2,
(b) A typical feature map after the semantic information extraction branch in Bisenet
V2, (c) A typical feature map after the aggregation layer in Bisenet V2, (d) A typical
feature map after the detail information extraction branch in DB-Net, (e) A typical
feature map after the semantic information extraction branch in DB-Net, (f) A typical
feature map after the aggregation layer in DB-Net. As the red arrow points, the typical
feature maps are enhanced by our semantic information extraction branch and detail
information extraction branch in DB-Net stronger than those in Bisenet V2.

3.1.1. Semantic information extraction branch
As shown in Fig. 2, semantic information extraction branch mainly

contains seven layers. The first layer is a convolution with a stride
of 2 to extract image features and rapidly reduce the image size.
The second layer is the multi-downsampling module like Bisenet V2.
Different from Bisenet V2 using convolution and deep convolution,
Res2Net module [44] is used in the third, fourth, fifth, and sixth
layers to enhance the multi-scale representation ability with a finer
granularity. It can combine features of different scales and numbers
without adding additional calculations. In the seventh layer, a channel
layer is introduced like Bisenet V2 to compress the number of channels
of the semantic information extraction branch. The structure of the
channel layer is shown in Fig. 3(a).

3.1.2. Detail information extraction branch
As shown in Fig. 2, the detail information extraction branch mainly

contains four layers. Different from Bisenet V2, this branch extracts
fine-grained features through a combination of ordinary convolution
and multi-scale convolution. The multi-scale convolution layer includes
three convolutions with convolution kernels of 1 × 1, 3 × 3 and 5 × 5
to extract features of different scales. These features are concatenated
together to aggregate all the features. The aggregation layer is de-
signed like Bisenet V2 to fuse the output feature map of the detailed
information extraction branch and the output feature map of the se-
mantic information extraction branch. In order to reduce parameters,
a combination of deep convolution and ordinary convolution is used
to obtain semantic features, which are multiplied with the attention
weight of another branch to achieve mutual guidance and transmission
4

Fig. 5. Contrast enhancement block (CEB).

Fig. 6. The typical feature maps before and after CEB for pancreatic tumor segmenta-
tion. (a) Original image with manual annotation of pancreatic tumor (the red mask),
(b) Input of CEB, (c) Output of CEB. As the red arrow points, the feature map is
significantly enhanced by the CEB.

of information. Finally, the information is merged through convolu-
tion. The structure of the aggregation layer is shown in Fig. 3(b). In
order to utilize the original image information, the original image is
down-sampled to one-half, one-quarter, and one-eighth of its own size.
Then, they are concatenated with the feature maps after the three
max-pooling layers to enrich detailed information in the feature map.

Compared to Bisenet V2, Res2Net modules and multi-scale convo-
lution are used the semantic information extraction branch and detail
information extraction branch in DB-Net to extract the information of
different sizes of receptive fields to make the information in the feature
map richer and more accurate; and deconvolution and skip-connection
operation are used in the decoder to gradually enlarge the feature
map to the original image size like U-Net decoder. In addition, the
deep supervision mechanism is also used to resample each layer of the
decoder to its original size and the loss function is computed according
to different levels of supervision. Fig. 4 shows the typical feature maps
before and after the aggregation layer of DB-Net and Bisenet V2. As
shown in Fig. 4, compared with Bisenet V2, detail information extrac-
tion branch, DB-Net enhances the detailed information of the pancreas
region and suppresses the detailed information of non-pancreas, for
semantic information extraction branch, DB-Net retains the semantic
information of the pancreas very well. Therefore, after fusion through
the aggregation layer, DB-Net can better segment the pancreas.

3.2. Pancreatic tumor segmentation

The overall structure of the fine-grained enhancement encoder–
decoder network (FE-Net) is shown in Fig. 2. Since U-Net [13] achieves
good results in medical image segmentation, U-Net framework is also
used. In order to further improve pancreatic tumor segmentation per-
formance, a CEB is proposed to guide the network to pay more attention
to the edge details of the pancreatic tumor. Second, RAB is designed us-
ing decoder information to guide the mining of complementary discrim-
inative regions. Pancreatic tumor is segmented within the segmented
pancreas to eliminate most of the irrelevant background regions and
improve the accuracy of pancreatic tumor segmentation.
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Fig. 7. Reverse attention block (RAB).

3.2.1. Contrast enhancement block
In the traditional U-Net, in order to use possible information ex-

tracted by the encoder branch in the decoder branch, a skip connection
operation is designed to directly merge the feature maps of the encoder
layer and the decoder layer by concatenation. But it is difficult to filter
irrelevant information in the feature map of the encoder. To highlight
the edge details of the pancreatic tumor in the feature map of the
encoder layer, a CEB is proposed as shown in Fig. 5. The feature map
of the encoder layer can be denoted as Input, and the output of the
contrast enhancement block 𝑂𝑢𝑡𝑝𝑢𝑡 can be formulated as

𝑜𝑢𝑡𝑝𝑢𝑡 =
(

1 + 𝐺1
)

× 𝑖𝑛𝑝𝑢𝑡 +
(

1 − 𝐺1
)

×
(

𝐺2 ×𝐷𝑒𝑒𝑚
)

, (1)

where 𝐷𝑒𝑒𝑚 is the edge extraction module as

𝐷𝑒𝑒𝑚 = 𝑖𝑛𝑝𝑢𝑡 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃 𝑜𝑜𝑙𝑖𝑛𝑔 (𝑖𝑛𝑝𝑢𝑡) , (2)

The CEB use the self-attention mechanism to enhance the feature
representation, and ultimately better extract the fine-grained features
of pancreatic tumors. Average pooling can used to extract local av-
erage information. The edge details can be obtained by subtracting
the local average information from Input. 𝐺1 and 𝐺2 modules compute
the deterministic contribution weight of each position in the feature
map to the final expected result through the attention mechanism.
𝐺1 is multiplied by the Input to obtain deterministic information of
each position in the Input. Similarly, the key information of the edge
feature map is obtained by multiplying Input and 𝐷𝑒𝑒𝑚, and (1 − 𝐺1)
corresponds to the weight of the uncertain position in the Input feature
map, and multiplying with the key information of the edge details
can enhance and supplement edge detail information. The final output
result introduces a residual structure, which not only enhances the key
feature information, but also supplements the edge detail information,
and can also avoid the difficulty of gradient backpropagation that may
occur after deep convolution and the problem of difficult to improve
accuracy. Fig. 6 shows the feature maps before and after CEB. It can be
seen that the contrast between the tumor area and surrounding tissues
is very low before passing CEB, and the boundary between the tumor
area and surrounding tissues becomes clear after passing CEB.

3.2.2. Reverse attention block
The network produces the segmented results of abnormal pancreas

through sequentially upsampling. It can only capture a relatively rough
location without structural details. To solve this problem, a reverse
attention block is designed as shown in Fig. 7. The block utilizes the
output feature of each layer of decoder to mine the complementary
regions and details of the previous layer. Specifically, given the high-
level skip-connection inputs 𝐼𝑛𝑝𝑢𝑡1 and the reverse attention weight
𝑊𝑟, the attention feature map 𝑂𝑢𝑡𝑝𝑢𝑡 can be denoted as

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝜎1
(

𝑓1 (𝑖𝑛𝑝𝑢𝑡1)
)

×𝑊𝑟 + 𝑖𝑛𝑝𝑢𝑡1, (3)

The reverse attention weight 𝑊𝑟 can be formulated as

𝑊𝑟 = 𝜎2
(

−𝑓2 (𝑖𝑛𝑝𝑢𝑡2)
)

, (4)

where 𝑓1 denotes the convolution operation, 𝜎1 denotes the ReLU
activation function, 𝑓2 denotes the deconvolution operation, 𝜎2 denotes
the Sigmoid activation function, and 𝐼𝑛𝑝𝑢𝑡2 denotes the feature map of
the current decoder layer. Inverting the rough feature map obtained by
5

Fig. 8. The typical feature maps before and after RAB. (a) Original image, (b) Input1
of RAB, (c) Input2 of RAB, (d) Output of RAB. As the red arrow points, the feature
map of pancreatic tumor area is significantly cleaned by the RAB.

deconvolution and multiplying it with the high-level encoder feature
map can refine the inaccurate and rough estimation into an accurate
and complete prediction map. Fig. 8 shows the feature maps before
and after RAB. We can see that after RAB, the rough feature map of
the decoder layer guides the feature map of the upper encoder layer to
obtain a fine inverted pancreatic tumor region, and highlight the tumor
region to obtain a more accurate boundary.

3.3. Loss function

As pancreas and pancreatic tumor segmentation are two-class seg-
mentation tasks with class imbalance, Dice similarity coefficient loss
(Dice loss) rather than cross entropy loss is used to supervise the
training of the DBFE-Net. Given prediction map 𝑋 and ground truth
𝑌 , Dice loss is defined as

𝑙𝑜𝑠𝑠 = 1 −
2 |𝑋 ∩ 𝑌 |
|𝑋| + |𝑌 |

, (5)

In DB-Net, deep supervision mechanism is used to assist supervision
with loss functions behind each layer of the decoder. The overall loss
function 𝐿𝑡𝑜𝑡𝑎𝑙 can be defined as

𝐿𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑙 +
𝑛
∑

𝑖=1
𝑎𝑢𝑥_𝑙𝑜𝑠𝑠𝑖, (6)

where 𝑙𝑜𝑠𝑠𝑙 represents the loss function of the last layer of the network,
𝑎𝑢𝑥_𝑙𝑜𝑠𝑠𝑖 represents the oss function of the 𝑖th decoder layer. In this
network, 𝑛 = 3, and the loss function is the Dice loss in Eq. (5).

3.4. Implementation details

3.4.1. Preprocessing
The original intensity value of the CT image is truncated to [−100,

240] to enhance pancreatic details, and then each original CT image
is normalized to a mean value of 0 and a variance of 1 to reduce
data discrepancies caused by the medical image acquisition process.
In order to prevent the model from being severely affected by the
background, the experiment of pancreas segmentation is trained on the
slices containing at least 50 pancreatic pixels. In order to obtain and
utilize part of the spatial information in the three-dimensional image
without increasing the amount of calculation, three consecutive slices
are used as the input of our network
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3.4.2. Pancreas segmentation
Pancreas segmentation is completed by two stages of training and

predicting. In the first stage, the size of the network input is
512 × 512 × 3. In the second stage, the original CT slices are cropped
according to the segmented results predicted in the first stage, and the
cropped region is to extend 20 pixels up, down, left, and right along
the largest bounding box that can contain the pancreatic segmented
results. Then, the cropped CT slice is used as the input of the second
stage pancreas segmentation network. Since the size of the cropped
result of each slice is not fixed, in order to meet the requirements of
the fixed input size of the neural network, the right and bottom edges
of the cropped CT slices are filled with zeros to unify their size to
192 × 256. Since the pancreas is a consecutive and complete organ,
after the segmentation of our first-stage network and second-stage
network, three-dimensional maximum connected regions are reserved
to further improve the segmentation accuracy.

3.4.3. Pancreas tumor segmentation
The CT volumes of the pancreas are further cropped according

to the results of the pancreas segmentation. The cropped regions are
also to extend 20 pixels up, down, left, and right along the largest
bounding box that can contain the pancreatic segmented results. Then,
zero padding is also used on the right and bottom edges of the cropped
CT slices to unify the size to 192 × 256. Since only a small part of the
pancreatic slices contain pancreatic tumors, this experiment uses the
slices containing pancreatic tumors and the slices without pancreatic
tumors at a ratio of about 1:1 as the training set to train the network
to prevent the model from being seriously affected by the background.
In order to obtain and use part of the spatial information in the three-
dimensional images without increasing the amount of calculation, three
consecutive slices are also used as the input of the pancreatic tumor
segmentation network.

3.4.4. Training parameters
All networks are trained on a workstation equipped with one

NVIDIA Tesla K40 m GPU with 12G memory. Adam algorithm is used
with an initial learning rate of 10−4 to optimize the weights of the
network in the training process. In our experiment, the batch size is
3. In the training of the pancreas segmentation network, the epoch is
20. In the training of the pancreatic tumor segmentation network, the
epoch is 40. The total training time is 35.94 h, and the overall average
test time for each CT volumes is 18.39 s. Among them, the training
time of the first stage, second stage of DB-Net and FE-Net are 13.73 h,
4.63 h and 17.58 h respectively, and the average test time for each CT
volumes are 9.87 s, 4.61 s and 3.91 s, respectively.

4. Experiments

In this section, we test the performance of pancreas segmenta-
tion and pancreatic tumor segmentation by performing comprehen-
sive evaluations on our benchmark dataset. Additional details about
experiments and results are reported as follows.

4.1. Dataset

The dataset is provided by Shanghai Changhai Hospital. CT im-
ages in the portal venous phase are used. The abnormal pancreas
dataset contains 116 contrast-enhanced abdominal CT volumes, with
109 PDAC (pancreatic ductal adenocarcinoma) and 7 PASC (pancreatic
adenosquamous carcinoma). The maximum diameters of tumors in 57
CT volumes are smaller than 2 cm, the maximum diameters of tumors
in 56 CT volumes are between 2 cm and 4 cm, and the maximum
diameters of tumors in 3 CT volumes are larger than 4 cm. Another
normal pancreas dataset contains 42 contrast-enhanced abdominal CT
volumes. The size of each CT volume is 512 × 512×L, where L ∈ [174,
6

376] is the number of sampling slices along the long axis of the body,
Table 1
Ablation experiment of pancreas segmentation results of dual-branch structure (Mean
± Standard Deviation).

Methods Recall (%) Precision (%) Jaccard (%) F1 (%)

Semantic-only 70.15 ± 20.16 84.63 ± 8.31 61.44 ± 16.93 74.56 ± 15.15
Detail-only 78.65 ± 13.94 90.75 ± 5.35 72.64 ± 12.65 83.44 ± 9.85
DB-Net 85.55 ± 12.05 89.20 ± 5.59 77.24 ± 11.05 86.63 ± 8.63

Table 2
Comparisons of abnormal pancreas segmentation results between DB-Net and
state-of-the-art networks (Mean ± Standard Deviation).

Methods Recall (%) Precision (%) Jaccard (%) F1 (%) p

FCN [15] 72.46 ± 16.23 83.07 ± 7.86 62.27 ± 12.97 75.82 ± 11.75 8.22 × 10−29

BisenetV2 [43] 75.21 ± 15.82 81.68 ± 9.44 64.03 ± 13.54 76.85 ± 12.20 1.37 × 10−20

ResDSN [16] 91.39 ± 10.20 65.50 ± 14.24 61.84 ± 13.79 75.40 ± 12.05 1.06 × 10−16

SegNet [22] 73.73 ± 17.44 87.86 ± 6.14 66.14 ± 14.67 78.50 ± 13.06 3.55 × 10−18

nnU-Net [45] 91.07 ± 5.72 70.96 ± 15.01 66.10 ± 13.65 78.73 ± 10.51 6.34×10−13
CE-Net [31] 78.58 ± 15.19 87.03 ± 6.53 69.85 ± 12.92 81.38 ± 10.79 1.45 × 10−11

Att U-Net [39] 80.33 ± 15.73 89.39 ± 5.98 72.85 ± 13.81 83.38 ± 11.58 2.45 × 10−7

mU-Net [32] 80.67 ± 15.30 89.23 ± 5.30 73.14 ± 13.39 83.65 ± 10.95 9.74 × 10−8

U-Net [13] 80.63 ± 15.57 90.26 ± 5.33 73.93 ± 13.98 84.11 ± 11.61 3.64 × 10−5

Swin-UNet [46] 84.42 ± 5.41 85.33 ± 4.87 73.36 ± 5.22 84.69 ± 3.54 3.18 × 10−6

HNN [35] 83.44 ± 12.56 87.86 ± 5.66 74.37 ± 11.14 84.73 ± 9.10 3.93 × 10−7

w-Net [47] 83.47 ± 10.25 88.09 ± 5.25 74.74 ± 8.89 85.23 ± 6.20 3.72 × 10−3
DB-Net 85.55 ± 12.05 89.20 ± 5.59 77.24 ± 11.05 86.63 ± 8.63 –

Table 3
Comparisons of normal pancreas segmentation results between DB-Net and
state-of-the-art networks (Mean ± Standard Deviation).

Methods Recall (%) Precision (%)) Jaccard (%) F1 (%) p

ResDSN [16] 86.96 ± 21.98 59.08 ± 13.73 53.50 ± 17.10 67.86 ± 16.82 2.73 × 10−8

Swin-UNet [46] 63.03 ± 17.62 77.53 ± 9.74 53.36 ± 15.05 68.14 ± 15.37 9.22 × 10−21

BisenetV2 [43] 66.99 ± 18.94 79.08 ± 12.67 57.05 ± 16.29 71.00 ± 16.16 2.2 × 10−8

FCN [15] 71.53 ± 14.69 80.67 ± 10.03 61.05 ± 13.23 74.90 ± 11.24 1.77 × 10−8

nnU-Net [45] 86.56 ± 11.61 73.19 ± 18.40 66.36 ± 17.59 78.23 ± 14.84 7.13 × 10−7

SegNet [22] 76.96 ± 15.91 83.76 ± 9.38 67.01 ± 14.67 79.22 ± 11.74 1.67 × 10−7

CE-Net [31] 80.53 ± 14.81 79.97 ± 13.01 67.81 ± 15.81 79.63 ± 12.73 2.2 × 10−8

HNN [35] 75.69 ± 17.19 89.95 ± 8.01 69.58 ± 16.23 80.85 ± 12.75 1.36 × 10−7

mU-Net [32] 79.77 ± 16.58 88.27 ± 6.38 72.26 ± 15.03 82.87 ± 11.87 1.19 × 10−6

w-Net [47] 83.51 ± 13.48 84.64 ± 9.39 72.69 ± 13.91 83.25 ± 12.12 3.28 × 10−19

U-Net [13] 82.68 ± 12.42 85.05 ± 9.69 72.40 ± 13.32 83.27 ± 9.43 4.24 × 10−7

Att U-Net [39] 82.74 ± 13.09 85.69 ± 10.23 72.69 ± 13.55 83.43 ± 9.63 5.16 × 10−7
DB-Net 87.08 ± 10.20 89.98 ± 6.97 79.43 ± 10.91 88.07 ± 7.62 –

the spatial resolutions are between 0.579 mm×0.579 mm×0.8 mm and
0.746 mm×0.746 mm×1.5 mm. All the CT volumes are accurately and
manually labeled by an experienced radiologist. The abnormal pancreas
dataset is randomly divided into two groups of different patients to
perform the experiments according to the two-fold cross-validation
strategy.

4.2. Evaluation metrics

To quantitatively evaluate the performance of our proposed method,
the segmented results are evaluated with ground truth based on the fol-
lowing four measures1: Precision, Recall, Jaccard, F1. F1 is mainly used
to measure the similarity between the segmented results and ground
truth. Wilcoxon test of F11 is performed to compare the difference
between our method and related methods, and p < 0.05 is considered
to be statistically significant.

4.3. Pancreas segmentation results

4.3.1. Ablation experiments of dual-branch structure
In order to prove the superiority of the proposed dual-branch coding

structure, ablation experiment is done. First, semantic information
extraction branch is only retained as the encoder, and the other parts of
the network remain unchanged. Then, the detail information extraction
branch is only retained as the encoder, and the other parts of the
network remain unchanged. The experimental results are shown in Ta-
ble 1. Recall, Precision, Jaccard and F1 scores of DB-Net are increased

1 https://scipy.org/

https://scipy.org/
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Fig. 9. Abnormal pancreas segmentation of different methods. The red mask is ground
truth, the green mask is the segmented result. The yellow arrow points out the under-
segmentation and the cyan arrow points out the over-segmentation. (a) Original image,
(b)–(l) Locally enlarged pancreas segmented results of different methods. (b) FCN [15],
(c) BisenetV2 [43], (d) ResDSN [16], (e) SegNet [22], (f) nnU-Net [45], (g) CE-Net [31],
(h) Att U-Net [39], (i) mU-Net [32], (j) U-Net [44], (k) Swin-UNet [46], (l) HNN [35],
(m) w-Net [47], (n) DB-Net.

by 15.4, 4.57, 15.8, 12.07 compared to the network with only semantic
coding branch, respectively. Recall, Jaccard and F1 scores of DB-Net are
increased by 6.9, 4.6, 3.19 compared to the network with only detailed
coding branch, respectively. This shows that DB-Net is better than the
single-branch network for the pancreas segmentation task in CT images.
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Fig. 10. Normal pancreas segmentation of different methods. The red mask is ground
truth, the green mask is the segmented result. The yellow arrow points out the under-
segmentation and the cyan arrow points out the over-segmentation. (a) Original image,
(b)–(l) Locally enlarged pancreas segmented results of different methods. (b) FCN [15],
(c) BisenetV2 [43], (d) ResDSN [16], (e) SegNet [22], (f) nnU-Net [45], (g) CE-Net [31],
(h) Att U-Net [39], (i) mU-Net [32], (j) U-Net [44], (k) Swin-UNet [46], (l) HNN [35],
(m) w-Net [47], (n) DB-Net.

4.3.2. Comparison experiments of DB-Net
In order to prove that the performance of DB-Net is better, DB-

Net is compared to state-of-the-art segmentation networks: FCN [15],
BisenetV2 [43], ResDSN [16], SegNet [22], nnU-Net [45], CE-Net [31],
Att U-Net [39], mU-Net [32], U-Net [13], Swin-UNet [46], w-Net [47]
and HNN [35]. To make the comparison experiment results fair, seg-
mented results only in the first stage of DB-Net are compared to those
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Table 4
Comparison of two-stage segmentation of abnormal pancreas (Mean ± Standard
Deviation).

Methods Recall (%) Precision (%) Jaccard (%) F1 (%)

Stage_1 85.55 ± 12.05 89.20 ± 5.59 77.24 ± 11.05 86.63 ± 8.63
Stage_2 87.42 ± 11.43 89.07 ± 5.74 78.72 ± 10.60 87.62 ± 8.12

Table 5
Comparison of two-stage segmentation of normal pancreas (Mean ± Standard
Deviation).

Methods Recall (%) Precision (%) Jaccard (%) F1 (%)

Stage_1 87.08 ± 10.20 89.98 ± 6.97 79.43 ± 10.91 88.07 ± 7.62
Stage_2 95.50 ± 8.63 91.47 ± 8.04 87.74 ± 10.90 93.05 ± 7.23

by using state-of-the-art segmentation networks. Quantitative compar-
ison of abnormal pancreas are shown in Table 2. It can be seen from
the table that Jaccard and F1 scores of DB-Net reach the best to 77.24,
86.63, respectively. DB-Net statistically outperforms the state-of-the-
art methods with p < 0.05 of wilcoxon-test for F1. In order to make
an intuitive comparison between the segmented results of DB-Net and
the segmented results of other networks, Fig. 9 show some abnormal
pancreas segmented results. As shown in the first column in Fig. 9, the
pancreas is soft and lobulated, and the pancreas is not continuous in
a single CT slice. Pancreatic lobules are prone to be severely under-
segmented by traditional methods, and it is difficult to segment them
completely and accurately. As shown in the second column in Fig. 9,
the similarity between the pancreas and the surrounding tissues is
too high and pancreas region is small, causing some methods to fail
to identify this region, or it is difficult to distinguish the boundary.
As shown in the third column in Fig. 9, due to the similarity of the
pancreas to the surrounding tissues is too high, the traditional methods
of segmentation is easy to cause severe under-segmentation, and it
is difficult to segment accurately. As shown in the fourth column of
Fig. 9, because the head region and the tail region of the pancreas
are too similar to the surrounding tissues, and the boundary is not
clear, the traditional methods of segmentation will lead to serious over-
segmentation. However, due to the extraction and use of semantic
information and detailed information, DB-Net can greatly reduce over-
segmentation and under-segmentation, so as to achieve more accurate
segmentation.

In order to better verify the performance superiority of DB-Net,
the model that has been trained for the abnormal pancreas is used
to segment the normal pancreas. Quantitative comparison of normal
pancreas are shown in Table 3. It can be seen that for the segmentation
of the normal pancreas, DB-Net can also achieve good results, Recall,
Precision, Jaccard and F1 scores of DB-Net reach the best to 87.08,
89.98, 79.43, 88.07. DB-Net statistically outperforms the state-of-the-
art methods with p < 0.05 of wilcoxon-test for F1. Similarly, the
comparison of the segmented results of normal pancreas is shown
in Fig. 10. As shown in the first column in Fig. 10, the intensities
of the pancreas are lower than those of the general pancreas, which
makes it difficult to detect or accurately segment the pancreatic region
with traditional methods. As shown in the second, third and fourth
column in Fig. 10, because the head region and the tail region of the
pancreas are too similar to the surrounding tissues, there is no obvious
boundary, the traditional method is easy to be unable to accurately
discriminate the boundary. It can be seen that DB-Net still achieves
good segmentation performance, and can capture the boundary very
well to achieve accurate segmentation.

4.3.3. Comparison experiments of the two-stage segmentation strategy
In order to prove the effectiveness of the two-stage segmentation

strategy, the segmented results of the first stage are compared to the
final segmented results of the two stages. The quantitative comparison
8

Fig. 11. Pancreas segmentation of two stages. The red mask is ground truth, and
the green mask is the segmented result. The yellow arrows point out the under-
segmentation. (a) Original image of abnormal pancreas, (d) Original image of normal
pancreas, (b)(e) Locally enlarged pancreas segmented results of the first stage, (c)(f)
Locally enlarged pancreas segmented results of the second stage.

Table 6
Ablation experiment results of pancreatic tumors by using CEB and RAB (Mean ±
Standard Deviation).

Methods Recall (%) Precision (%) Jaccard (%) F1 (%)

Baseline 64.38 ± 27.15 66.70 ± 25.81 44.47 ± 20.88 58.14 ± 23.40
Baseline+CEB 64.91 ± 26.26 69.60 ± 24.47 45.74 ± 20.39 59.65 ± 22.29
Baseline+RAB 69.17 ± 23.93 64.16 ± 24.52 45.79 ± 19.18 60.15 ± 20.29
DBFE-Net 65.73 ± 25.29 69.60 ± 23.84 47.26 ± 19.46 61.45 ± 20.73

Table 7
Comparisons of pancreatic tumor segmentation results between DBFE-Net and
state-of-the-art networks (Mean ± Standard Deviation).

Methods Recall (%) Precision (%) Jaccard (%) F1 (%) p

HNN [35] 64.65 ± 25.75 47.86 ± 29.33 31.87 ± 20.48 44.54 ± 24.88 4.86 × 10−15

FCN [40] 58.77 ± 31.81 58.23 ± 29.37 34.19 ± 21.95 46.64 ± 27.07 2.22 × 10−12

Swin-UNet [46] 54.58 ± 28.00 48.73 ± 23.44 34.05 ± 18.76 47.61 ± 23.24 1.08 × 10−10

w-Net [47] 60.76 ± 30.88 57.99 ± 27.28 37.36 ± 21.13 50.74 ± 24.23 2.17 × 10−8

SegNet [22] 57.51 ± 31.98 66.71 ± 27.71 38.53 ± 23.29 51.10 ± 27.56 8.46 × 10−9

nnU-Net [45] 65.57 ± 30.41 56.31 ± 29.93 38.81 ± 21.64 52.18 ± 24.50 8.66 × 10−6

Att U-Net [39] 65.06 ± 27.45 61.73 ± 26.18 42.47 ± 21.18 56.09 ± 23.53 6.32 × 10−5

U-Net [13] 64.38 ± 27.15 66.70 ± 25.81 44.47 ± 20.88 58.14 ± 23.40 5.02 × 10−3

mU-Net [32] 64.61 ± 25.86 69.60 ± 23.84 47.26 ± 19.46 59.14 ± 21.53 4.75×10−2
DBFE-Net 65.73 ± 25.29 69.60 ± 23.84 47.26 ± 19.46 61.45 ± 20.73 –

results are shown in Table 4. It can be seen from the table that the
two-stage segmentation network has a better segmentation than the
one-stage segmentation network. Recall, Jaccard, and F1 scores are
increased by 1.87, 1.48, and 0.99, respectively. In order to better verify
the superiority of the performance of the two-stage strategy, a compar-
ison experiment with normal pancreas is also done. All the scores of
Recall, Precision, Jaccard, and F1 are increased by 8.42, 1.49, 8.31 and
4.98. It shows that for normal pancreas without tumor interference,
the two-stage segmentation strategy is very effective (see Table 5).
Fig. 11 shows a comparison of abnormal pancreas and normal pancreas
segmented results. The pancreas segmented results obtained by the
two-stage segmentation network are more refined than the segmented
results obtained only using the first stage. The over-segmentation and
under-segmentation in the first stage can be corrected in the second
stage to make the segmented result more accurate.

4.4. Pancreatic tumor segmentation results

4.4.1. Ablation experiments of CEB and RAB
In order to prove that CEB and RAB have a positive effect on improv-

ing the segmented results of pancreatic tumors, ablation experiments
are performed on these two blocks, and performed quantitative and
qualitative analysis. The baseline network is U-Net without CEB and
RAB. The experimental results are shown in Table 6. As can be seen in
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Fig. 12. Pancreatic tumor segmentation of different methods. The red mask is ground
truth, and the green mask is the segmented result. The yellow arrow points out the
under-segmentation and the cyan arrow points out the over-segmentation. (a) Original
image, (b)–(i) Locally enlarged pancreas tumor segmented results of different methods.
(b) HNN [35], (c) FCN [40], (d) Swin-UNet [46], (e) w-Net [47], (f) SegNet [22], (g)
nnU-Net [45],(h) Att U-Net [39], (i) U-Net [13], (j) mU-Net [32], (k) DBFE-Net.

Table 6, compared to the baseline network, Recall, Precision, Jaccard,
and F1 scores of the network with CEB are increased by 0.53, 2.9,
1.27, and 1.51, respectively. Compared to the baseline network, Recall,
Jaccard, and F1 scores of the network with RAB are increased by
4.79, 1.32, and 2.01, respectively. When these two blocks are added
to the network, the segmented result of the network is almost the best.
CEB and RAB can help the network segment pancreatic tumors more
accurate.
9

4.4.2. Comparison experiments of DBFE-Net
DBFE-Net is also compared to state-of-the-art segmentation net-

works: HNN [35], FCN [40], Swin-UNet [46], w-Net [47], SegNet [22],
nnU-Net [45], Att U-Net [39], U-Net [13] and mU-Net [32]. Quantita-
tive comparisons are shown in Table 7. Recall, Precision, Jaccard, and
F1 scores have reached 65.73, 69.60, 47.26, and 61.45, respectively
and the results of pancreatic tumors segmented by DBFE-Net are more
accurate than state-of-the-art networks. As shown in Table 7, DBFE-
Net has better performance than these methods for the segmentation of
pancreatic tumors with p < 0.05 of wilcoxon-test for F1. Particularly,
although HNN [35] outperforms other traditional methods in Jaccard
and F1 for pancreas segmentation as show in Table 2, it performs poor
for pancreatic tumor segmentation.

The results of different methods are visually compared, as shown in
Fig. 12. As shown in Fig. 12, due to the supplement and enhancement
of the details of pancreatic tumors by CEB and RAB, the results of
pancreatic tumors segmented by DBFE-Net are more accurate than
state-of-the-art networks. As shown in the first and the second col-
umn of Fig. 12, the tumor area is small, and the contrast with the
surrounding pancreatic area is not obvious, the region is difficult to
locate, and the boundary cannot be accurately segmented. For the
case in the third and the fourth column of Fig. 12, the dark region is
dilated pancreatic duct and its intensities are similar to those of tumors,
traditional methods cannot determine the boundary well and cannot
accurately segment. It can be seen that DBFE-Net can accurately locate
and segment the tumor in some extreme situations such as small tumors
and low contrast caused by pancreatic duct dilation.

5. Conclusion

In this paper, DBFE-Net is designed to segment pancreatic tumors in
contrast-enhanced CT images. A dual-branch encoder–decoder network
(DB-Net) as the first part of DBFE-Net is designed to segment the
pancreas. The semantic branch can extract the rich semantic features of
the pancreas and its surroundings through deep convolution and down-
sampling operations to overcome the influence of numerous blood
vessels, tissues, and organs around the pancreas, and the other branch
can capture the complex pancreas through wide-channel convolution
and few down-sampling operations to overcome the problem of unclear
pancreatic edges. Finally, a U-Net decoder is used to obtain the accurate
pancreatic segmented results. FE-Net is also designed to segment pan-
creatic tumors. CEB is set after the encoder layer to extract the edge
detail information of the pancreas in the feature map of the encoder
layer. RAB is set between the encoder and the decoder. The output of
each layer of the decoder features are used to fuse the complementary
areas and details of the previous layer to make up for the tumor
information lost in the down-sampling. Experimental results show the
proposed method can achieve better segmentation of pancreatic tumors
than state-of-the-art segmentation networks.
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